首页

欢迎

 

Welcome

欢迎, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

数论
Questions in category: 数论 (Number Theory).

[Tao/Green]素数含有任意长度的等差数列

Posted by haifeng on 2012-12-28 13:39:14 last update 2015-04-25 10:47:56 | Answers (0)


http://annals.math.princeton.edu/2008/167-2/p03


The primes contain arbitrarily long arithmetic progressions

Pages 481-547 from Volume 167 (2008), Issue 2 by Ben Green, Terence Tao

Abstract

We prove that there are arbitrarily long arithmetic progressions of primes. There are three major ingredients. The first is Szemerédi’s theorem, which asserts that any subset of the integers of positive density contains progressions of arbitrary length. The second, which is the main new ingredient of this paper, is a certain transference principle. This allows us to deduce from Szemerédi’s theorem that any subset of a sufficiently pseudorandom set (or measure) of positive relative density contains progressions of arbitrary length. The third ingredient is a recent result of Goldston and Yıldırım, which we reproduce here. Using this, one may place (a large fraction of) the primes inside a pseudorandom set of “almost primes” (or more precisely, a pseudorandom measure concentrated on almost primes) with positive relative density.

 
Primary: 11N13 Secondary: 11A41, 11B25, 37A45
10.4007/annals.2008.167.481
Received: 9 April 2004
Revised: 2 June 2005
Accepted: 12 September 2005

Authors

Ben Green

Center for Mathematical Sciences
University of Cambridge
Cambridge CB3 0WB
United Kingdom

 

Terence Tao

Department of Mathematics
University of California at Los Angeles
Los Angeles, CA 90095
United States

 


主要定理:

素数集合中包含无穷多长度为 $k$ (对所有 $k$ 都对) 的等差数列(arithmetic progression).

换句话说:

对任意 $k$, 存在各项都是素数的等差数列

\[
a_1,\ a_1+d,\ a_1+2d,\ \ldots,\ a_1+(k-1)d.
\]